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We give an analogue of Levin–Sodin–Yuditskii’s study of the dynamical Ruelle
determinants of hyperbolic rational maps in the case of subhyperbolic quadratic
polynomials. Our main tool is to reduce to an expanding situation. We do so by
applying a dynamical change of coordinates on the domains of a Markov partition
constructed from the landing ray at the postcritical repelling orbit. We express the
dynamical determinants db(z)=exp−;k \ 1

zk

k ;w ¥ Fix fk
1

((fkc )
− (w))b

1

1− 1

(fkc )
− (w)

(b ¥ Z+)

as the product of an (entire) determinant with an explicit expression involving
the postcritical repelling orbit, thus explaining the poles in db(z).

KEY WORDS: Subhyperbolic/periodic/(post)critically finite quadratic poly-
nomial; dynamical Fredholm determinant; Ruelle transfer operator; Yoccoz
puzzle.

1. INTRODUCTION

Let f be a rational function on the Riemann sphere, with bounded Julia set J.
We shall recall some classical results of Ruelle and more recent work of
Levin–Sodin–Yuditskii which hold under a hyperbolicity assumption,
before moving to our study of subhyperbolic polynomials.

Assume then that J is real and that f is hyperbolic on J, i.e., there
exist constants K > 0, r > 1 such that |(fk)Œ (x)| \K·rk for all x in J and



all nonnegative integers k. The thermodynamical formalism of hyperbolic
quadratic polynomials is well understood by now (see, e.g., refs. 1–4), we
shall only recall here results on Ruelle transfer operators which are con-
nected to our study. Consider the transfer operator

Lj(x)= C
fy=x

j(y)
(fŒ(y))2

, (1.1)

acting on the space of functions j analytic in a critical point-free complex
neighbourhood of the Cantor set J. Ruelle (1, 5) observed that the operator
L acting on bounded holomorphic functions in a neighbourhood of J is
nuclear in the sense of Grothendieck, in particular L admits a Fredholm
determinant det(1−zL), that Ruelle expressed as the following dynamical
function:

det(1−zL)=exp− C
k \ 1

zk

k
C

w ¥ Fix fk

1
((fk)Œ (w))2

1
1− 1

(fk)Œ (w)

. (1.2)

Here, Fix fk={w ¥ C | fk(w)=w} (in particular we include complex fixed
points—which will be present in most subhyperbolic examples introduced
later—but do not include w=.).

More recently, Levin, Sodin, and Yuditskii [ref. 6, (4.15), (5.4)]
obtained remarkable explicit expressions for det(1−zL), which only
involve the iterates of the critical points of the expanding rational map f
(with bounded real Julia set). In the special case of a quadratic polynomial
fc(z)=z2+c with c < −2, they find

det(1−zL)=exp− C
k \ 1

zk

k
C

w ¥ Fix fkc

1
((fkc )Œ (w))

2

1
1− 1

(fkc )Œ (w)

=1+C
k \ 1

(z/2)k

fc(0) · · ·f
k
c (0)
. (1.3)

Our aim here is to obtain analogous results for the subhyperbolic
(i.e., postcritically finite) case of quadratic polynomials. Note that Levin
et al. extended their results (7) to more general hyperbolic rational maps
f (than in ref. 6), but considering only transfer operators LQj(x)=
;fy=x j(y) Q(y) associated to a rational weight Q with no pole on the
Julia set. (In ref. 7, Section 5 the case Q(y)=(fŒ(y))2 is considered,
but the analysis does not cover subhyperbolic polynomials.)

Our first observation (see Section 4 for a proof ) is that the second
equality in (1.3) still holds formally for all quadratic polynomials:
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Theorem A (Formal Levin–Sodin–Yuditskii Identity). Let fc be
a quadratic polynomial. Then we have (in the sense of formal power series
with coefficients rational functions of c):

exp− C
k \ 1

zk

k
C

w ¥ Fix fkc

1
((fkc )Œ (w))

2

1
1− 1

(fkc )Œ (w)

=1+C
k \ 1

(z/2)k

fc(0) · · ·f
k
c (0)
.

Note that if fc is a Collet–Eckmann quadratic polynomial, i.e.,

lim inf
kQ.

1
k

log |(fkc )Œ (fc(0))| > 0,

then the identity in Theorem A is an equality between convergent power
series.

In the following we make the additional assumption that the critical
point is preperiodic (many of our ideas could be extended to the Collet–
Eckmann case). The thermodynamical formalism of preperiodic quadratic
polynomials is not as straightforward as that of hyperbolic polynomials
(see, e.g., ref. 8 for a pedestrian construction of the absolutely continuous
invariant measure and refs. 9 and 10 for a more recent analysis of the phase
transitions).

The finiteness of the postcritical orbit implies that the right-hand-side
in Theorem A defines a rational function. Our aim is now to interpret the
left-hand side in Theorem A as a (necessarily modified, since it is not
entire) dynamical determinant, similarly to the first equality of (1.3). For
this, we shall conjugate our complex subhyperbolic quadratic polynomial
with an expanding analytic dynamical system. This is related to the
‘‘Thurston orbifold’’ metric that Douady and Hubbard (11) construct in a
ramified covering space over a neighbourhood of the Julia set in order to
exhibit the hyperbolic properties of subhyperbolic polynomials (see com-
ments after the proof of Theorem B). Here we shall use a more direct con-
struction (as was that of ref. 8, on the real axis) in order to analyse the
dynamical determinant.

More precisely, we first build a finite Markov partition in the complex
plane reminiscent of (but not the same as) the Yoccoz puzzle (we consider
external rays at the landing periodic point and iterate them backwards
finitely many times). We then introduce conjugacies defined by iterates of
the map itself, defining (Section 2) new coordinates for our dynamics. (This
in fact is analogous to the conjugacy appearing in the towers of Young, (12)

e.g.) We show in Section 3 that we thus obtain an expanding analytic
system where the results of Ruelle (5) apply and give rise to a Ruelle–
Grothendieck–Fredholm dynamical determinant. One needs to relate the
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Fredholm determinants of the system in the old and the new coordinates,
this is Lemma 6 in Section 3 where we prove that the only special periodic
orbit is the postcritical one. Our main result is the following theorem,
proved in Section 4:

Theorem B (Determinant for Subhyperbolic Quadratic Poly-

nomials). Let fc be a quadratic polynomial with a preperiodic critical
point c, landing on a repelling periodic point cn of period m \ 1, multiplier
lf of modulus > 1, and admitting q \ 1 external rays, each of period d ·m.
For every nonnegative integer b, and any function h holomorphic in a
neighbourhood of the Julia set of fc, define

db(z)=exp− C
k \ 1

zk

k
C

w ¥ Fix fk

<k−1
a=0 h(f

a

c(w))
((fkc )Œ (w))

b

1
1− 1

(fkc )Œ (w)

. (1.4)

Then there is a choice of mf=`ldf with m2f=ldf such that, writing
hm :=<m−1

a=0 h(f
a

c(cn)), the product

d̂b(z)=db(z) ·D
j \ 0

(1−zdmhdm m−j−bf )q

1−zmhml−j−bf

(1.5)

extends to an entire function. The zeroes of this function are exactly the
inverses of the nonzero eigenvalues of the transfer operator

Lbj(x)= C
fc(y)=x

h(y) ·j(y)
(f −c(y))

b

acting on a Banach space Bb of multivalued functions (with prescribed
singularities along the postcritical orbit) in a neighbourhood of the Julia set
of fc.

The definition of `ldf is given in (3.12), and Bb is constructed in the
proof of Theorem B in Section 4 (see (4.6), and our comments there linking
our construction with the ramified covering in ref. 11).

The simplest illustration of Theorem B is given by the quadratic
map f−2(z)=z2−2, where f2−2(0)=2 is a fixed point with derivative
lf=+4. We may compute db(z) for b=2 from Theorem A, and find
1−;k \ 1 zk/4k=(1−z/2)/(1−z/4). Theorem B (here m=d=q=1, and
(3.12) gives `4=+2) then says that d̂2(z)=(1−z/2)<j \ 0 (1−z/(8 ·22j)),
an entire function which vanishes at z=2 and z=8·22j for all nonnegative
integer j.
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In fact, the proof of Theorem B is local, and we shall prove the
following generalisation in Section 4 (see, e.g., ref. 13 for the definition of a
quadratic-like map):

Theorem BŒ (Determinant for Subhyperbolic Quadratic-Like

Maps). The statement of Theorem B also holds if fc is a quadratic-like
map with a preperiodic critical point landing on a repelling periodic point.

We mention that Epstein (14) and Ushiki (15, 16) have independently
studied related determinants with different approaches. The tower con-
struction in Smirnov’s Ph.D. [ref. 10, Section 4.1] is more closely related to
our method, but was used towards different goals (in particular no deter-
minants were considered).

Finally, we would like to point out that the assumption that all critical
points are mapped to repelling periodic orbits is enough to extend our
results to polynomials (or polynomial-like maps) of higher degree, or
even to a suitable class of rational maps. (The square root appearing in
Theorem B should be replaced by a root of degree of the appropriate criti-
cal point, and the q, d-counting becomes more complicated.)

2. DYNAMICAL CHARTS FOR PREPERIODIC QUADRATIC

POLYNOMIALS

Consider a quadratic polynomial f(z)=z2+c (we shall discuss qua-
dratic-like maps only when proving Theorem BŒ at the end of Section 4).
Then . is a super-attractive critical fixed point of f with f(.)=f−1(.)
=.. Thus there are an open neighbourhood V of . and a unique holo-
morphic diffeomorphism f defined on V, such that f(.)=., fŒ(.)=1
and f(z2)=f(f(z)). (This is the Boettcher conjugacy.) The other critical
point of f is 0. The set C={cj=f j(0)}

.

j=0 is called the critical orbit of f.
If C does not intersect V, i.e., if it is bounded (the corresponding parameter
value c=c1 then lies in the Mandelbrot set, by definition), then f can be
holomorphically extended to the domain {z ¥ Cb | |z| > 1}.

Henceforth, we assume that C is bounded.
The image B=f({z ¥ Cb | |z| > 1}) is the basin of . under the iteration

of f. Its complement K=Cb 0B is called the filled-in Julia set of f, and the
boundary J=“K is called the Julia set of f. (It is well known that K is
connected if and only if C is bounded.)

The image of a circle {z ¥ C | |z|=r} of radius r > 1 under f is called
an equipotential curve of f. The image ch of a half-line eh={re2pih | r > 1} is
called an external ray of angle h of f. An external ray ch is said to land at a
point w in K if the limit limrQ 1+ f(re2pih) exists and is w.
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A point in K is called a periodic point of period m > 0 if f j(p) ] p for
1 [ j < m and fm(p)=p. For a periodic point p of period m, its multiplier
is l(p)=(fm)Œ (p). The periodic point p is called repelling if |l(p)| > 1,
attracting if |l(p)| < 1, neutral if |l(p)|=1. The following theorem is due to
Douady (the polynomial need not be assumed quadratic):

Douady Landing Theorem. Let f be a polynomial with a con-
nected filled-in Julia set and let p be a repelling periodic point of f of
period m. Then there is a nonempty finite set of (say q \ 1) external rays
landing at p. There is a divisor d \ 1 of q such that each of these landing
rays is periodic of period m·d.

A proof of the Douady landing theorem can be found, e.g., in ref. 17,
Theorem I.A; ref. 18, Corollary B.1 (see ref. 19 for a statement without the
assumption that the Julia set is connected).

Since C is a finite set, then either 0 itself is periodic, or there is a
nonzero periodic point in C. If 0 is not periodic but preperiodic (i.e., one of
its forward iterates is periodic), then the polynomial f is called subhyper-
bolic (or preperiodic, or (post)critically finite). (The corresponding param-
eter value c is often called a Misiurewicz point, see, e.g., ref. 20 for some of
their nontrivial properties.) In this case, it is known that the filled-in Julia
set K of f has no interior and coincides with the Julia set J. Moreover,
the periodic orbit in C is repelling (see refs. 21 and 22). We shall restrict
henceforth to subhyperbolic quadratic polynomials.

For a preperiodic quadratic polynomial f we have

C={c0=0, c1=c,..., cn−1, cn,..., cn+m−1, cn+m=cn}, (2.1)

with n=min{j \ 0, cj is periodic } \ 1, and {cn=f(cn+m−1),..., cn+m−1} is a
(repelling) periodic orbit, of multiplier denoted by

lf=(fm)Œ (cn). (2.2)

Finally, we write

f(C)={c1,..., cn−1, cn,..., cn+m−1}

for the postcritical orbit of f.
The Douady landing Theorem says that there is a finite number q of

external rays landing at cn. Denote the union of the corresponding curves
as Cn. Then Cn can be pulled back by f−1, giving a union Cn+m−1 of external
rays landing at cn+m−1 and Cn−1 of external rays landing at cn−1. Through
pull-back by appropriate branches of f−1 we obtain a collection of external
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rays Cj landing at cj, for all 0 [ j < n+m. Note that #Cj=q for all j ] 0
while #C0=2q (the doubling comes from taking a square root). Let

C= 0
n+m−1

j=0
Cj (2.3)

be the finite set of external rays landing at the critical orbit, and let U ‡ J
be an open domain bounded by an equipotential curve of f. For 0 [ j <.,
set Uj=f−j(U). Then C̄ cuts U=U0 into finitely many domains. This
finite partition P0={t

0
i }
k0
i=0 into open domains deserves to be called a

Markov partition because it satisfies the following properties:

(1) The restriction of f on each t0i is injective.

(2) For each t0i ¥P0, the image f(t0i 5 U1) is a union of domains in
P0 (neglecting boundaries).

In Fig. 1, the Markov partition P0 is represented for the quadratic
polynomial with n=3 and m=1, i.e., f3(0) is a repelling fixed point. (In
this case, we have q=2 external rays at f3(0)=c3.)

Pulling-back P0 via (both branches of ) f−1, we get a finer Markov
partition P1=P0 Kf−1(P0), and construct inductively

Pa=Pa−1 Kf−a(P0)={taj}kaj=1, (2.4)

Fig. 1. Partitions P0 and Q in case n=3, m=1.
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where each taj is an open domain in Ua such that fa: taj Q t0j is a homeo-
morphism. Thus, we construct a sequence {Pa}

.

a=0 of nested Markov par-
titions. Adapting to our slightly different partition the proof that the pieces
of the Yoccoz puzzle containing a point z shrink to that point for nonre-
normalizable quadratic polynomials (see ref. 17, Theorem 5.7, Remarks 5.2
and 7.7(a)), we get that the maximal diameter maxj{diam(taj)} tends to
zero as a goes to infinity. This gives the following lemma, defining our
initial partition:

Lemma–Definition 2 (Partition Q). There is an integer a0 \ 0 such
that t̄ 5 f(C) contains at most one point for each t=ta0i ¥Pa0 . Taking the
smallest such integer a0, define the partition Q=Pa0 .

In the case illustrated in Fig. 1 (where Q is also drawn), we have a0=1.
Starting from Q, we now construct a system of charts and dynamical

conjugacies. It is convenient to introduce some further notation. We will
say that a ray c is a boundary ray of a domain t ¥ Q if c 5 t̄ is non-empty.
The landing point for each such ray is called a vertex point of t. By con-
struction a vertex point v is either in the critical orbit or a pre-image (up to
a0 iterates backwards) of the critical point. The closure of t is the disjoint
union of t, its boundary rays and its vertex points (plus a piece of an
equipotential curve which is, however, not of interest here). An element
t ¥ Q is called non-singular if its closure does not intersect the postcritical
orbit f(C), otherwise (i.e., if at least one of its vertices belongs to f(C)) it
is called singular. In fact, when t is singular, by definition of a0, the inter-
section t̄ 5 f(C) is a singleton {cj} for some 1 [ j < n+m; we then say that
t is singular of index j, and write ind(t)=j. (For consistency we denote
ind(tŒ)=0 when tŒ is not singular.) If t, g ¥ Q and f(g) ` t, we write

f−1gt : t Q g

for the corresponding inverse map.
From now on, let us fix an external ray c ¥ Cn. As in the construction

of C we may pull-back c=cn along the postcritical orbit taking suitable pre-
images by f. All pull-backs are local diffeomorphisms, except for the last
which produces two external rays c0± at c0 which cut the Riemann sphere
into two topological disks H± . Choosing one of these, say H+ (we shall see
below that this choice is immaterial, see e.g., Lemma 6), and denoting by c1
the image ray at c1, we may define an inverse branch of fc,

r(z)=`z−c1, (2.5)

which maps C0c1 conformally onto H+.
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We shall now recursively define our dynamical coordinates, construct-
ing a collection of (conformal) maps and open charts {(kt, Vt) | t ¥ Q},
with

kt: t Q Vt … C, t ¥ Q.

Definition 3 (Dynamical Charts).

(1) If t ¥ Q is non-singular, then Vt=t and kt(z)=z is the identity
map.

(2) If t is singular of index one, then Vt=r(t), and kt(z)=r(z), i.e.,
k is the restriction of the fixed inverse branch r.

(3) If t is singular of index j > 1, there is a unique singular g ¥ Q

which has index j−1 and such that f(g) ` t. We define inductively kt
(and Vt) by kt(z) :=kg p f

−1
gt (z) (this recursion is finite, with at most

n+m−1 steps).

We may view the conjugacies kt either as holomorphic charts of our
partition Q or as a map k from a subset of the complex plane to a tower
consisting in the disjoint union of finitely many open complex coordinate
charts:

k: 0
t ¥ Q

t Q e
0 [ j < n+m

e
gŒ ¥ Q, ind(gŒ)=j

VgŒ, k|t=kt.

Note that when t ¥ Q has index j > 0, we may also caracterise Vt as the
unique connected component in H+ with 0=c0 ¥ Vt such that f j: Vt Q t is
a conformal bijection (and kt is then the inverse map of f j).

Finally, we construct a dynamical system on the tower, based on the
inverse branches of f in the new coordinates. For domains t and g in Q

such that f(g) ‡ t, we define a conjugated inverse branch:

ggt=kg p f
−1
gt p k−1t : Vt Q Vg.

3. PROPERTIES OF THE DYNAMICS IN THE NEW CHARTS

In this section, we list the properties of our preperiodic quadratic
polynomial viewed in the charts constructed in Section 2. They will suffice
to prove Theorem B in the next section. The first step is to extend the local
inverse branches in the charts:

Lemma 4 (Holomorphic Extension in Dynamical Charts). There
are open neighbourhoods Wt ‡ Vat, for t ¥ Q, such that each conjugated
inverse branch ggt: Vt Q Vg extends holomorphically to ggt: Wt Q C.
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Proof of Lemma 4. When t̄ does not intersect the postcritical orbit
the conjugating map kt is the identity map and thus extends as a conformal
bijection to a larger domain. Any inverse branch of f also extends to a
larger domain because the critical value is not on the boundary. The image
of such an enlarged domain does not intersect the postcritical orbit either
(if this domain is not taken too large) and kg extends holomorphically as
well.

If t is singular of index j \ 1 but g is not, then kg is the identity map
and

ggt=f
−1
gt p k−1t =f

−1
gt p f

j. (3.1)

When j > 1, f−1gt can be extended to a small neighbourhood of t̄ (because
c1 ¨ t̄), and the map g can be extended to a small neighbourhood of Vat.
(Note that in this case the origin is on the boundary of Vt but that the con-
jugated map ggt(w)=const+w2+O(w4) is not injective in a neighborhood
of the origin). If j=1, then f−1gt=±r | t. So ggt(z)=±z.

When both t and g are singular there are two possibilities: First, cj ¥ t̄

and cj−1 ¥ ḡ for some 1 < j < n+m. From the definition of the k’s,

kt=kg p f
−1
gt .

Hence, ggt(z)=z is the identity map and can be extended holomorphically.
The other possibility (the most interesting one) is that cn ¥ t̄ and

cn+m−1 ¥ ḡ. We need to map both t and g to domains containing the critical
point on the boundary. We shall do so in two steps: First we conjugate to
domains with the critical value on the boundary and thereafter to domains
with the critical point on the boundary:

Let tŒ be the (unique) singular domain of index n such that fm−1(tŒ)
‡ g, i.e., fm(tŒ) ‡ t. The domains t and tŒ may be different (in fact, this
happens precisely when d > 1 where d was the divisor of q in the Douady
landing Theorem). Let f−mttŒ be the inverse of fm: tŒQ t. Then, by definition,

ggt=kgf
−1
gt k−1t =ktŒf

−m
tŒt k−1t . (3.2)

Let t1 be the singular domain of index 1 such that fn−1(t1) ‡ t. The
corresponding inverse is f1−nt1t : t Q t1. We define similarly t −1 and the asso-
ciated maps (relative to tŒ).

Then for z ¥ Vt we may express the conjugated map as follows:

ggt(z)=r p f
1−n
tŒ1tŒ
f−mtŒt f

n−1
tt1
p f(z)=r p F p f(z). (3.3)
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It is clear that f−mtŒt can be analytically extended to a small neigh-
bourhood of t̄ (since its linearisation around the fixed point cn is of the
form zW z/lf). When starting from the critical value the associated itera-
tes do not meet the critical point and therefore f1−nt1t can also be analyti-
cally extended to a small neighbourhood of t̄. These maps are all local
diffeomorphisms. Hence, the middle composition h has c1 as a fixed point
and in a neighborhood of this fixed point a local power series expansion,

F(w)=f1−ntŒ1tŒf
−m
tŒt f

n−1
tt1
(w)=c1+l−1f (w−c1)+O((w−c1)

2). (3.4)

By post- and precomposing with r and f, respectively, we see that ggt can
be extended to a small neighbourhood of Vat with the local power series
expansion

ggt(z)=±(`lf)−1 z+O(z2). (3.5)

Note that when d > 1 the sign of the square root may depend on the choice
of the ray c which was used to define the map r. This ambiguity will
disappear in the dynamical determinant (where a dth iterate occur, see
Lemma 6). L

Our next step is to obtain contraction in the sense of the Schwartz
lemma (we will thus be in a position to apply standard results of Ruelle on
Fredholm determinants for holomorphic contractions). The basic idea in
the proof is fairly standard in complex dynamics (using ‘‘thickened’’ puzzle
pieces), but some complications arise from the conjugacies.

Lemma 5 (Contraction in Dynamical Charts). Up to taking
slightly smaller domains Wt ‡ Vat than in Lemma 4, we have

ggt(W̄t) … Wg

for each conjugated inverse branch ggt: Wt Q Wg, and t, g ¥ Q.

Proof of Lemma 5. There are two steps. First we will cover the
postcritical orbit and up to a0 pre-images thereof by a suitable collection of
small balls. These will provide domains for local contractions. We will then
use slightly ‘‘thickened’’ external rays to fill in and obtain global contrac-
tions (see ref. 13, pp. 213–214 for a similar construction).

Consider a small open ball B(cn, d) of radius d > 0 centered at the
point, cn. Since cn=cn+m is a repelling periodic point of fm, there are
dg > 0 and r > 1 such that for 0 < d < dg, we have fm(B(cn, d)) ‡
B(cn, drm). When v ¥ t̄ is a vertex point there is j ¥ {− a0,..., n+m−1}
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(called the index of the vertex point) such that f j−n(cn)=v. Let Bv be the
connected component of f j−n(B(cn, drn−j)) which contains the vertex
point, v (when j \ n we consider the image, while for j < n we take the pre-
image). Since a0 is finite we may take d small enough so that the collection
of balls, Bv, v a vertex, is disjoint.

Consider a transition g Q t between two domains. Let v ¥ t̄ be a vertex
point of t and let w=f−1gt (v) ¥ ḡ. There are three possibilities: either, case I,
w is itself a vertex point of g of index one smaller than the index of v,
case II, v=cn and w=cn+m−1, or, case III, w is not a vertex point but
belongs to the open domain g. In case I, the fact that r > 1 ensures that
f−1gt (Bv) … Bw. In case II, the choice of r and d was such that, f−1gt (Bv) …
fm−1gt (B(cn, dr−m)) … Bw. Finally, in case III, possibly by making d smaller,
we may ensure that f−1gt (Bv) … g.

In summary, with suitable choices of d and r we have that f−1gt (Bv)
… g 2 1w Bw, the union being taken over vertices of g. This ends the first
step in the construction.

Now, let ch be an external ray bounding a domain t ¥ Q, where h is its
angle, and let v be its landing point (which is a vertex of t). We may choose
E > 0 small enough so that every external ray (independently of whether or
not it lands) with angle in (h− E, h+E) will intersect the ball Bv. As the
number of vertices is finite, E can be chosen uniformly in v. Let c −z denote
the part of the ray of angle z between its entry in the equipotential neigh-
bourhood Ua0 and its first intersection with Bv. Finally, let c −h± E denote the
‘‘thickened ray’’ which is the union of all c −z for z ¥ (h− E, h+E).

Consider now a pre-image cz of ch, and let w be its landing point. The
pre-image is either bounding some domain g ¥ Q, or it is inside such a
domain. In the first case, the pre-image possesses a neighbourhood c −z± E of
rays, the point w is a vertex of g, and by construction one has (chosing for
the inverse the connected component intersecting c −z) f

−1
gt (c

−

h±E) … c −z±E 2 Bw,
essentially because a square root halves angle-differences. For the second
case, we may choose a smaller E so that (uniformly in these rays),
f−1gt (c

−

h± E) … g.
When the domain t is non-singular, we simply define Wt=

Vt 1v Bv 1i c −hi ± E the unions being over vertices and bounding rays of the
domain. If the domain is singular, say of index j > 0, then kt maps t to the
domain Vt containing the origin at the boundary. If ch is a ray which
bounds t then it has one or two pre-image(s) which bound(s) Vt (i.e., inter-
sect(s) the closure of Vt). To each such ray pre-image we associate a corre-
sponding pre-image (the connected component containing the ray), c −hŒ± E, of
the thickened ray c −h± E. Finally, to each vertex v, we associate a connected
component B −v of the corresponding ball Bv. We let Wt=Vt 1hŒ c −hŒ± E 1v B −v
and one verifies that by construction each ggt(W̄t) … Wg.
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Some remarks may clarify the procedure in the singular case: First
note that if only one ray, say ch, lands at cn, then both pre-images of c −h± E
will bound the domain Vt and hence both should be included in Wt.
Second, each Vt is an open subset of the ‘‘half-plane’’ H+ (since it is in the
image of r). The extended domain Wt, however, is a neighbourhood of the
closure of Vt, in particular it contains a neighbourhood of the origin.
Recall that if g was non-singular then ggt behaves as a quadratic map
around the origin. This illustrates a rather peculiar effect of our dynamical
conjugation, namely that on the extended domains, the (noninjective) map
ggt is a strict contraction but not the inverse of an expanding map. (This
reflects the fact that our construction is just another description of the
orbifold metric, see comments after the proof of Theorem B.) L

It remains to understand the relation between the periodic orbits and
multipliers of f: CQ C and those of the system of contractions

g={gtg}: W Q W, W=e
t ¥ Q

Wt.

(Slightly abusing terminology, we continue to call vertex of an Wt a vertex
of t.) In Lemma 6 we shall see that, except for the postcritical repelling
point, nothing changes. For this repelling periodic point, however, the
period is multiplied by d \ 1, and the multiplier must be replaced by an
appropriate square root of ldf. Let us first define this square root:

Dynamical Choice of`ld
f . The external ray c landing at cn that we

used to construct the partition Q may be parametrised as a real-analytic
map t ¥ RW c(t) ¥ C−{cn}, where limtQ. c(t)=. and limtQ −. c(t)=cn.
(We shall not make use of the fact that c is real-analytic, we only need the
continuity property.) The ray is invariant under the mdth iterate of the
map f, and it is convenient to choose the parametrisation (through a
simple expression involving the Boettcher conjugacy f) so that for all t ¥ R,

fmd(c(t))=c(t+md). (3.6)

Since c is a continuous curve and does not contain cn, we may write

c(t)=cn+exp(a(t)), (3.7)

where a is unique up to multiples of 2pi. By linearizing the invariance rela-
tion (3.6) for c, we see that (note here the extra dth power)

lim
tQ −.

exp(a(t)−a(t−md))=ldf. (3.8)
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Note that from (3.6), (3.7) and the fact that cn is a strictly repelling periodic
point, the convergence in (3.8) takes place at an exponential rate (because
|exp(a(t))|, which describes the correction to the right-hand-side of (3.8),
tends exponentially fast to zero as tQ.). The following limit thus also
exists and gives a logarithm for ldf:

lim
tQ −.

a(t)−a(t−md). (3.9)

Recall that the last two external rays c0± at c0 obtained by pulling
back c in the construction of our partition arose from taking a square root.
We may thus write

c0± (t)=f−n(c(t))=c0± exp(a0(t)). (3.10)

Here, a0 is unique up to multiples of pi, whence the plus-minus.
Through linearisation we see that (the constant is a logarithm of the deri-
vative along the postcritical orbit)

lim
tQ −.

a0(t)−a(t)/2=const. (3.11)

The pull-back along the postcritical orbit is holomorphic with a non-zero
derivative. It follows that the convergence in (3.11) also takes place at an
exponential rate with a correction of the order of |exp(a(t))|. This allows us
finally to define a square root of the multiplier (morally, we are defining a
logarithm of the square root, see (3.9)) :

`ldf — lim
tQ −.

ea0(t)−a0(t−md)= lim
tQ −.

e (a(t)−a(t−md))/2. (3.12)

It is interesting to note that this definition does not depend on the
choice of the parametrisations a and a0 (which is clear, including the fact
that +c0 and − c0 lead to the same choice), nor of the initial ray c landing
at cn. To see the latter we will use a simple homotopy argument: Let c̃

be another ray landing at cn. It does not intersect c and a logarithm of the
parametrisation, ã, can thus not intersect the family of curves a+iZ. The
same must be true for the pulled-back rays and this forces the limit
limtQ −. limkQ. (ã0(t)− ã0(t−mdk))/k to be independent of the various
choices. But this limit yields the unique (relative to the family of rays)
logarithm of`ldf. Taking exponentials we obtain the wanted conclusion.
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We can now state the last ingredient to prove Theorem B:

Lemma 6 (Periodic Orbits of f and g). There is an isomorphism
between the set of periodic points for f which are not in the postcritical
periodic orbit and the set of periodic points of g: W Q W which are not ver-
tices of domains. The isomorphism preserves the period and the multiplier
of these periodic points.

Let m·d be as in the Douady Landing Theorem. To each cj, with
n [ j < n+m in the postcritical periodic orbit, there corresponds q periodic
points of g which are vertices of domains. Each such point z has period
m·d and multiplier 1/`ldf (as defined in (3.12)). There are no other
periodic points for g.

Proof of Lemma 6. Consider a point z ¥ Wt for some t ¥ Q. This
point is periodic of period k \ 1 for g precisely when there is a symbol
sequence t0,..., tk−1, with t=t0 and such that there are transitions
tj Q tj+1mod k for each j=0,..., k−1 (we say such a cyclic symbol sequence
is admissible). In that case we have gt0t1 p · · · p gtk−1t0 (z)=z and further-
more, either z ¥ Vt (i.e., in the chart of the open domain of the original
partition) or z is (a lift of a point) in the postcritical periodic orbit. To see
this note first that contraction of the family g implies that each admissible
cyclic symbol sequence yields a unique fixed point z ¥ Wt0=Wt following
that sequence. Now, ggt: Wt Q Wg in fact maps Vt to Vg, and it follows that
the fixed point must be in the closure Vat of the domain in question. If z is
not in the interior it must be on the boundary. Clearly it can not be on the
piece of equipotential curve and no ray ch which bounds the domain can
contain any periodic points. Hence z must be a vertex of the domain and
only vertices which are lifts of points in the postcritical periodic orbit can
be periodic.

Since on the open domains f and g are conjugated by diffeo-
morphisms, we have already proved the first claim.

We now prove the remaining statements. Since there are q rays landing
at cn, there are q domains in Q having cn as a vertex. The same holds for all
points in the postcritical orbit, whence the (over)counting of the corre-
sponding periodic vertices for g. The (minimal) period m·d of the rays
gives the same minimal period of domains under the mapping g, proving
our claim on the period of the vertices. Finally to get the multiplier of the
return map of a periodic vertex z, let t be a domain having z=cn as a
vertex. Take any w ¥ Wt−{c0=0}. Then the multiplier will be the limit of
(gmdk(w)−c0)/(gmd(k−1)(w)−c0) as kQ.. If here we let w be a point on
the landing ray c+0 then it is easy to check that this limit coincides with the
one over the limit in (3.12) for `ldf. (Recall that if we took c−0 or another

Dynamical Determinants via Dynamical Conjugacies 987



ray we would get the same limit, by the observations made above. Note
also that the choice between H+ and H− does not intervene here.) L

4. DYNAMICAL DETERMINANTS—PROOFS OF THE THEOREMS

We first give the simple proof of the generalised Levin–Sodin–
Yuditskii (6) formula:

Proof of Theorem A. One views the second equality in (1.3) as an
identity between formal power series, i.e., between the critical orbit power
series and the exponential of the sum over fixed points. The coefficient of
zk is thus the same on both sides when −c is real and large enough. We
will show that each such coefficient ak(c) of the left-hand-side (involving
the periodic points) extends as a meromorphic function in c to the whole
plane. Uniqueness of meromorphic extensions will then give Theorem A.

Since the coefficient ak(c) of zk on the left-hand-side is a sum and
product of terms which only involve sums over fixed points of order not
greater than k, it suffices to show that each term of the type

C
w ¥ Fix fkc

1
(fkc )Œ (w)((f

k
c )Œ (w)−1)

(4.1)

defines a (single-valued) meromorphic function of c. Assume now that for
each k, the zeroes w(c) of

F(w, c)=fkc (w)−w

are isolated as a function of c. (This will be proved in Sublemma 7 below.)
Then the sum over Fix fk has only finitely many singular points, solutions
to algebraic equations. Take a loop in the complex plane which avoids
these singularities. Traversing the loop yields a permutation of the fixed
points. Hence the sum is unchanged, and the function is single-valued as we
wanted to show. L

Sublemma 7. Let F(w, c), G(w, c), and H(w, c) be polynomials in
w and c such that:

1. F(w, c)−wN is a polynomial in w and c of degree at most N−1
in w.

2. There is ĉ such that H(w, ĉ) ] 0 at all w for which F(w, ĉ)=0
(this guarantees that the function R(c) below is well-defined on a small
disc).
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Then the function

R(c)= C
w: F(w, c)=0

G(w, c)
H(w, c)

(4.2)

is rational.

In our application, we take F(w, c)=fkc (w)−w, G(w, c)=1,H(w, c)=
(f jc)Œ (w)((f

j
c)Œ (w)−1), and N=2k. We note (although we shall not need

this) that one can extend the above result to more general holomorphic or
even meromorphic functions.

Proof of Sublemma 7. Let w1,..., wN be N complex variables, and
let s1,..., sN denote the elementary symmetric functions

s1=w1+·· ·+wN, s2=C
i < j
wiwj,..., sN=w1 · · ·wN.

For fixed c, let {w1(c),..., wN(c)} denote the zero-set {w: F(w, c)=0}
(counted with multiplicity, we use the degree claim in (1) here). We have

F(w, c)=(w−w1(c)) · · · (w−wN(c))=wN−s1(c) wN−1± · · ·sN(c),
(4.3)

where s1(c),..., sN(c) are the elementary polynomials evaluated in the roots
wi(c). Each si(c) is a polynomial function of c because we assumed F(w, c)
to be polynomial in c.

We can now conclude: The function Hg(c)=<w=wi(c) H(w, c) is a
symmetric polynomial in the roots wi(c). The fundamental theorem of
symmetric functions (see, e.g., ref. 23) asserts that it is a polynomial in the
elementary functions evaluated at the roots, i.e.,Hg(c)=pH(s1(c),..., sN(c)),
for some polynomial pH. By the observation in the previous paragraph,
Hg(c) is thus a polynomial in c.

Finally,

R(c) Hg(c)= C
u=wi(c)

G(u, c) D
v=wj(c): j ] i

H(v, c) (4.4)

is also a symmetric polynomial in the roots hence a polynomial in c (not
identically zero by the assumptions on F and H). It follows that R(c) is
rational. L

Proof of Theorem B. Write ĥt=h p k−1t on Vt, and note that ĥxi
extends holomorphically to Wxi. By Lemmas 4 and 5, the Markov system
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of holomorphic contractions g: W Q W and (for any integer b) the holo-
morphic weight ĥ · (gŒ)b on W satisfy the assumptions of Theorem 1 in ref. 5.
In particular, the transfer operator L1b acting on the Banach space B1 of
holomorphic functions on W which admit a continuous extension to the
closure of W (endowed with the supremum norm) through

L1bĵ(ŵ)= C
admissible g

ĥ(ŵ)(g −gt(ŵ))
b · ĵ(ggt(ŵ)), ŵ ¥ Wt. (4.5)

is nuclear of order zero. (Indeed, as observed in ref. 5, p. 234, lines 1–10,
case k=0, this operator is bounded from the nuclear space H1 of holo-
morphic functions on W to the Banach space B1 , and the inclusion of B1 in
H1 is continuous, so that we may apply [ref. 24, I: p. 84, and II: p. 9, Cor.
p. 56, Cor. 4 p. 39, Cor. 2 p. 61].) Therefore, just as in the proof of
Theorem 1 in ref. 5, we may apply Cor. 4 p.18 in [ref. 24, II] to see that
L1b has a trace and a (Fredholm–Grothendieck) determinant

tr L1b=C
i
ui, det(1−zL1b)=D

i
(1−zui),

where the ui are the eigenvalues of L1b repeated according to multiplicity.
Furthermore, det(1−zL1b) is an entire function of order zero ([ref. 24, II,
Thm. 4, p. 16]). Using Cauchy kernels, Ruelle [ref. 5, line 17 of p. 235]
proved that the trace is given by

tr L1b= C
ŵ ¥ Fix g

ĥ(ŵ) · (gŒ(ŵ))b
1

1−gŒ(ŵ)
.

By Grothendieck’s Fredholm theory, the trace yields the determinant
through

det(1−zL1b)=exp− C
.

k=1

zk

k
tr L1 kb.

Note that, clearly,

tr L1 kb= C
ŵ ¥ Fix gk

D
k−1

a=0
ĥ(ga(ŵ)) · ((gk)Œ (ŵ))b

1
1−(gk)Œ (ŵ)

.

By Lemma 6, the only difference between the determinant d̂b(z)=
det(1−zL1b) of L1b and the formal determinant db(z) is the fact that the
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postcritical point of period m is (over)counted q \ 1 times in the tower, its
period is multiplied by d, and its multiplier is`ldf instead of ldf. Since

exp 5− C
k \ 1

zkmd

km
qm

(hdm)
k (`ldf)

kb

1

1− 1

(`ldf)
k

+C
k \ 1

zkm

km
m
hkmlkbf

1

1− 1

l
k
f

6

=D
j \ 0

11− zdm

hdm `ldf
b

1

`ldf
j
2q ·D

j \ 0

11− z
dm

hmlbf

1
l jf
2−1,

the resulting formula is as described in Theorem B.
Recall that the conjugacies kt: t Q Vt are holomorphic, and that

ggt p kt=kg p f
−1
gt on t, so that [(g −gt p kt) ·k

−

t]
b=[(k −g p f

−1
gt ) · (f

−1
gt )Œ]

b

there. We may use this conjugacy to define a Banach subspace B=Bb of
the set of functions j which are holomorphic on the (disjoint) union of the
open domains t ¥ Q. For this, we consider the continuous embedding of B1
through

j|t=(k
−

t)
b · ĵ|Vt p kt. t ¥ Q, (4.6)

Uniqueness of analytic continuations implies that this map is injective
(hence we get an embedding), and we may therefore define the norm of j

to be the corresponding (sup-)norm of ĵ ¥B1 (see ref. 25 for a similar con-
struction). Note that j ¥Bb is such that ((k−1t )Œ)

b · (j|t p k−1t ) extends to a
bounded holomorphic function on Wt, thus allowing a specific type of
singularities of j along the postcritical orbit. The weights in the above
conjugacy have been chosen so that L1b is conjugated to Lb through the
above isometry, proving our last claim. L

To analyse subhyperbolic quadratic polynomials, Douady–Hubbard (11)

construct a covering W2 over a neighbourhood of the Julia set, ramified
above the postcritical orbit and endow it with a metric which makes the
lifted polynomial f̃ uniformly expanding (see also [ref. 26, Section 3.2 and
Appendix A] for a description of this orbifold metric). Constructing a
Markov partition Q2 of W2 with ideas similar to those of the present paper,
one could define a Banach space B2 of holomorphic bounded functions
on W2 (which would be just another way to see B1 ) such that the transfer
operator associated to f̃ and the weight (f̃Œ)−b (with the modifications
inherent to the partition Q2 ) is nuclear. We leave out the details in this
approach.

Proof of Theorem B Œ. The Douady–Hubbard Theorem says that
a quadratic-like map with connected filled-in Julia set is conjugated to a
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unique quadratic polynomial by a quasiconformal homeomorphism (see,
e.g., ref. 13, pp. 192–194). The filled-in Julia set of our subhyperbolic
quadratic-like map is connected, so that this quasiconformal homeo-
morphism allows us to construct a Markov partition, just like in Section 2,
using the (quasiconformal) images of the external rays of the conjugated
quadratic polynomial. The rest of the argument follows exactly as in the
case of a polynomial (see Section 3 and the proof of Theorem B). L
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H.H.R. at I.H.É.S., and of V.B. and Y.J. at the F.I.M., E.T.H. Zürich. We
thank both institutes for financial support and their warm hospitality. V.B.
acknowledges partial support from Fonds National Suisse de la Recherche
Scientifique. Y.J. is supported in part by grants from NSF and PSC-
CUNY. V.B. and H.H.R. benefitted from the PRODYN programme of the
ESF.

REFERENCES

1. D. Ruelle, Repellers for real analytic maps, Ergodic Theory Dynam. Systems 2:99–107
(1982).

2. M. Zinsmeister, Formalisme thermodynamique et systèmes dynamiques holomorphes, Soc.
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